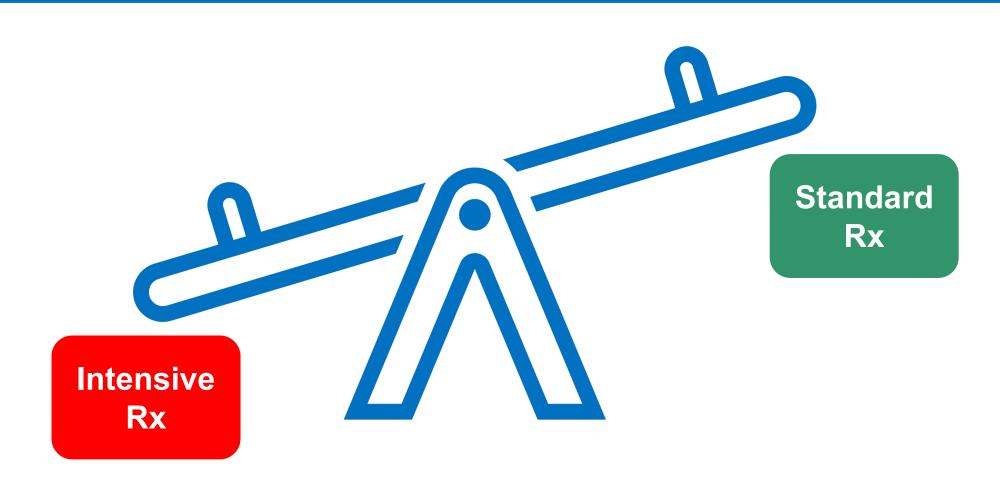

## Shifting Targets: The Latest Evidence on Hypertension Management

รศ.พญ. วีรนุช รอบสันติสุข สาขาวิชาความดันโลหิตสูง ภาควิชาอายุรศาสตร์ คณะแพทยศาสตร์ศิริราชพยาบาล

## Scope

- RCTs in HT: Intensive BP control vs Standard BP control
  - **-**ESPRIT
  - **—**STEP
  - -RESPECT
  - **-**SPRINT
  - -ACCORD
- Situation of BP control in our country

#### Risk of CV Events According to SBP and DBP




**Fig. 3** Restricted cubic spline curves showing age-specific adjusted hazard ratios for the risk of cardiovascular events according to SBP and DBP categories. Solid lines indicate hazard ratios and shaded areas indicate 95% confidence intervals. SBP, systolic blood pressure; DBP, diastolic blood pressure

## HBPM Recommendations in Major Guideline and Consensus Documents

|                                 | Diagnosis of hypertension | Diagnostic BP<br>threshold, mm Hg | Titration and monitoring of antihypertensive therapy | Target BP threshold, mm Hg                                 |
|---------------------------------|---------------------------|-----------------------------------|------------------------------------------------------|------------------------------------------------------------|
| ACC/AHA 2017 <sup>9</sup>       | ✓                         | ≥130/80                           | ✓                                                    | <130/80                                                    |
| ESC/ESH 2018 <sup>10</sup>      | ✓                         | ≥135/85                           | ✓                                                    | ≤130/80                                                    |
| ISH 2020 <sup>8</sup>           | ✓                         | ≥135/85                           | ✓                                                    | <135/85                                                    |
| JSH 2019 <sup>7</sup>           | ✓                         | ≥135/85                           | ✓                                                    | <125/75 (age <75 y) or <135/85 (age<br>≥75 y)              |
| China 2019 <sup>11</sup>        | ✓                         | ≥135/85                           | ✓                                                    | <140/90 or <130/80 if tolerated or in high-risk pts        |
| Taiwan 2015 <sup>12</sup>       | ✓                         | ≥135/85                           | ✓                                                    | <140/90 or <130/80 if tolerated or in high-risk pts        |
| South Korea 2018 <sup>13</sup>  | ✓                         | ≥135/85                           | ✓                                                    | <140/90 (uncomplicated/elderly) or <130/80 (high-risk pts) |
| HOPE Asia Network <sup>14</sup> | ✓                         | ≥135/85                           | ✓                                                    | <135/85                                                    |

## How low should we go?



#### The Latest Evidence: The ESPRIT Study

Effects of intensive Systolic blood Pressure lowering treatment in reducing RIsk of vascular evenTs (ESPRIT): A multicenter open-label randomized controlled trial

#### The Latest Evidence: The ESPRIT Study

Background

BP lowering effectively reduces the risk of CV events in high risk individuals However, the optimal BP target among high risk individuals remains unclear

**Methods** 

A multi-center, open-label, randomized controlled trial to compare the efficacy and safety of intensive BP lowering strategy (SBP target <120 mmHg) vs standard BP lowering strategy (SBP target <140 mmHg)

#### The Latest Evidence: The ESPRIT Study

#### **Inclusion Criteria**

- Chinese adults aged ≥50 yrs old
- Baseline SBP 130-180 mm Hg at high
   CV risk, defined by
  - established CV diseases or
  - 2 major CV risk factors
  - ≥60 yr old male or ≥65 yr old female
  - **Diabetes**
  - Dyslipidemia
  - Current smoker

#### **Exclusion Criteria**

- Exclude individuals for whom the safety of intensive BP lowering Rx might be a concern
- Secondary HT
- 1-min standing SBP <110 mm Hg</li>
- LV ejection fraction <35%</li>
- Estimated GRF <45 mL/min/1.73 m<sup>2</sup>
- Proteinuria >2+

### **Baseline Characteristics of Participants**

|                                    | ESPRIT              | SPRINT              |
|------------------------------------|---------------------|---------------------|
| Age (yrs)                          | 64.6 <u>+</u> 7.1   | 67.9 <u>+</u> 9.4   |
| Age >75 yr (%)                     | 8.4                 | <u>28.2</u>         |
| Female (%)                         | 41.3                | 35.6                |
| Current somker (%)                 | <u>31.2</u>         | 13.3                |
| BMI (kg/m <sup>2</sup> )           | 26.3 <u>+</u> 3.3   | 29.9 <u>+</u> 5.8   |
| Baseline SBP                       | 146.9 <u>+</u> 10.6 | 139.7 <u>+</u> 15.6 |
| Baseline DBP                       | 82.8 <u>+</u> 10.3  | 78.1 <u>+</u> 11.9  |
| eGFR (ml/min/1.73 m <sup>2</sup> ) | 88.5 <u>+</u> 17.6  | 71.8 <u>+</u> 20.6  |

### **Baseline Characteristics of Participants**

|                              | ESPRIT | SPRINT   |
|------------------------------|--------|----------|
| DM (%)                       | 38.7   | <u>0</u> |
| Stroke (%)                   | 26.9   | <u>0</u> |
| MI (%)                       | 9.4    | 7.1      |
| CV dis other than stroke (%) | 29.5   | 16.7     |
| Heart failure (%)            | 0.4    | 3.5      |
| Statin (%)                   | 46     | 43.3     |
| Aspirin (%)                  | 42.8   | 50.8     |

#### The ESPRIT Study: Principal Findings

**Intensive Rx** 

**Standard Rx** 

P value

| 1° outcome (CV death, MI, stroke, coronary revas, noncoronary revas, or hospitalization for HF) | 3.2% | 3.6% | 0.03  |
|-------------------------------------------------------------------------------------------------|------|------|-------|
| CV death                                                                                        | 0.3% | 0.5% | <0.05 |
| Stroke                                                                                          | 1.5% | 1.7% | <0.05 |
| Syncope                                                                                         | 0.4% | 0.1% | <0.05 |

#### The ESPRIT Study: Interpretation

Among Asian patients with HT and a large proportion of DM & stroke, intensive BP control improves outcomes compared with standard control Target SBP <120 mmHg reduced major cardiac events vs <140 mm Hg Intensive BP control was associated with an absolute risk reduction of major adverse events of 0.4%

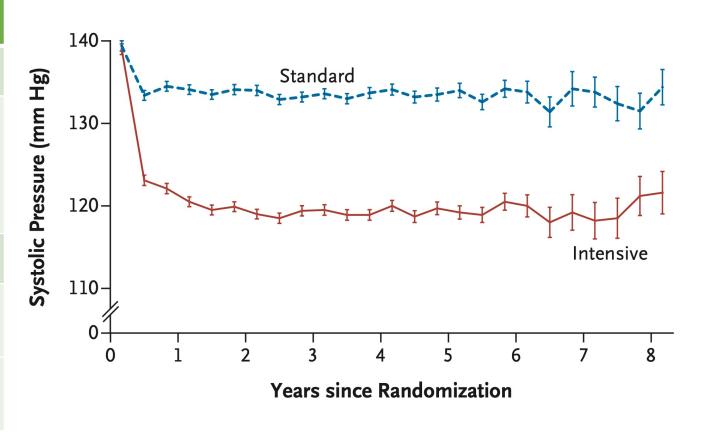
Intensive BP control was associated with an increased risk of syncope

The results of this trial are in line with the SPRINT trial, which enrolled <2% Asians and excluded subjects with DM or stroke.

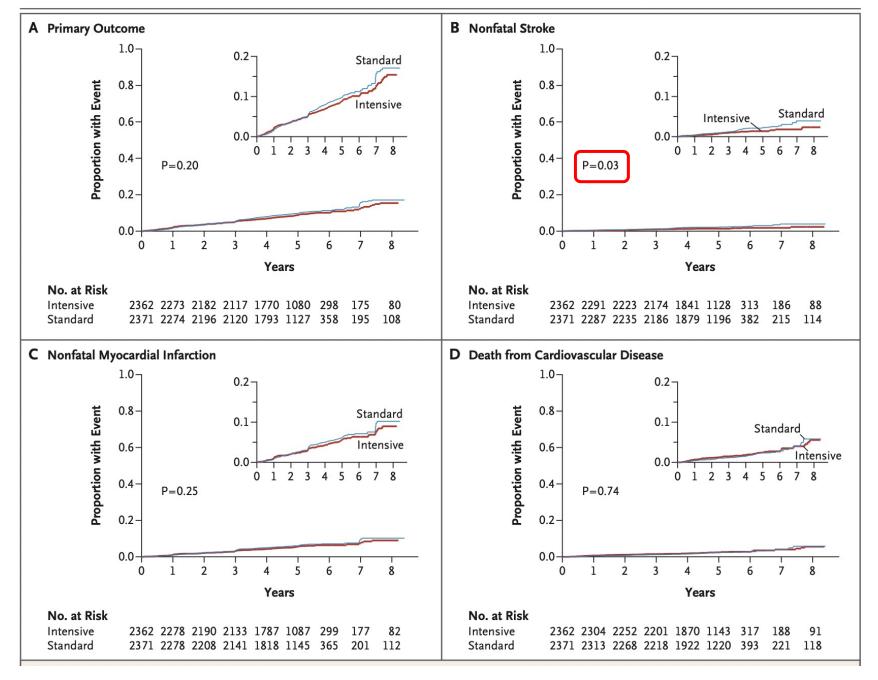
#### The ESPRIT Study: Interpretation

Overall, intensive Rx lowered the risk of MACE by a relative 12%, with a number needed to treat of 74

For every 1,000 patients treated to the intensive versus conventional SBP goal for 3 yrs, 14 major vascular events & 8 deaths would be avoided at the cost of 3 additional serious adverse events involving syncope

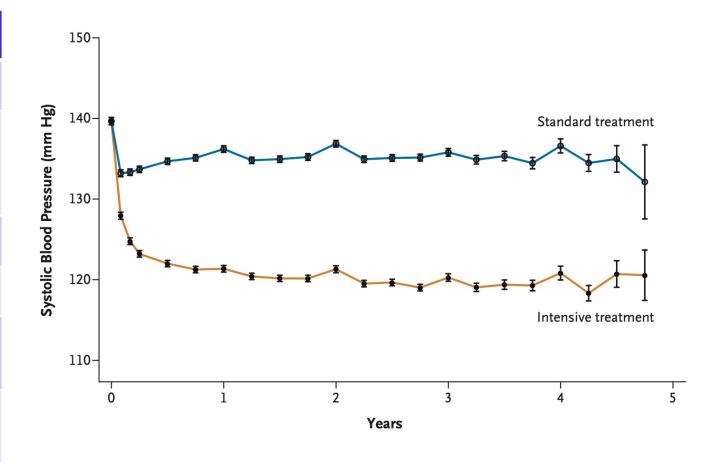

This indicates the benefit & safety of Rx targeting SBP <120 mm Hg among diverse Asian population similar to individuals with other ethnic backgrounds

## Summary of Previous Studies Intensive BP vs Standard BP Control


- 1 The ACCORD Study (2010)
  - 2 The SPRINT Trial (2015)
  - 3 The RESPECT Study (2019)
- 4 The STEP Trial (2021)

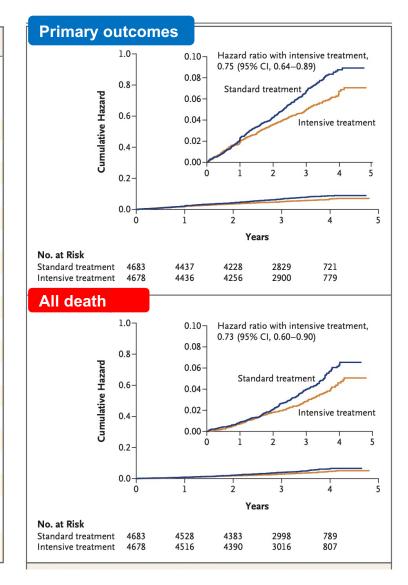
## Effects of Intensive BP Control in Type 2 DM The ACCORD Study

| Parameter          | Overall                                                                            |
|--------------------|------------------------------------------------------------------------------------|
| N                  | 4,733                                                                              |
| Subjects           | DM type 2,<br>SBP 130-180 mmHg while<br>on <3 anti-HT drugs and<br>24-hr UPCR <1 g |
| Age (yrs)          | 62.2                                                                               |
| Target BP (mmHg)   | SBP<br><120 vs <140                                                                |
| Achieved BP (mmHg) | At 1 yr<br>119.3 vs 133.5                                                          |




#### BP control did not reduce outcome 山 9 composite major nfatal a 0 **J**o Intensive the rate රජ fatal Jo



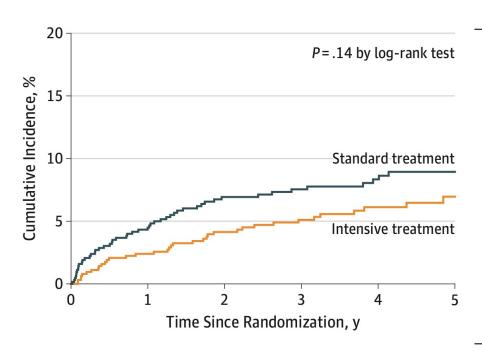

## A Randomized Trial of Intensive versus Standard BP Control The SPRINT Research Group

| Parameter          | Overall                                                         |
|--------------------|-----------------------------------------------------------------|
| N                  | 9,361                                                           |
| Subjects           | SBP 130-180 mmHg and increased CV risk, but without DM & stroke |
| Ethnicity          | Asian ~2%                                                       |
| Age (yrs)          | 67.9 (>75 yrs - 79.8%)                                          |
| Target BP (mmHg)   | SBP<br><120 vs <140                                             |
| Achieved BP (mmHg) | At 1 yr<br>121.4 vs 136.2                                       |



#### The SPRINT Research Group: Outcomes

| Outcome                                                                                 | Intensive Tre       | eatment    | Standard Tre        | eatment     | Hazard Ratio<br>(95% CI) | P Value |
|-----------------------------------------------------------------------------------------|---------------------|------------|---------------------|-------------|--------------------------|---------|
|                                                                                         | no. of patients (%) | % per year | no. of patients (%) | % per year  |                          |         |
| All participants                                                                        | (N = 4678)          |            | (N = 468)           | (N = 4683)  |                          |         |
| Primary outcome†                                                                        | 243 (5.2)           | 1.65       | 319 (6.8)           | 2.19        | 0.75 (0.64–0.89)         | <0.001  |
| Secondary outcomes                                                                      |                     |            |                     |             |                          |         |
| Myocardial infarction                                                                   | 97 (2.1)            | 0.65       | 116 (2.5)           | 0.78        | 0.83 (0.64–1.09)         | 0.19    |
| Acute coronary syndrome                                                                 | 40 (0.9)            | 0.27       | 40 (0.9)            | 0.27        | 1.00 (0.64–1.55)         | 0.99    |
| Stroke                                                                                  | 62 (1.3)            | 0.41       | 70 (1.5)            | 0.47        | 0.89 (0.63-1.25)         | 0.50    |
| Heart failure                                                                           | 62 (1.3)            | 0.41       | 100 (2.1)           | 0.67        | 0.62 (0.45-0.84)         | 0.002   |
| Death from cardiovascular causes                                                        | 37 (0.8)            | 0.25       | 65 (1.4)            | 0.43        | 0.57 (0.38–0.85)         | 0.005   |
| Death from any cause                                                                    | 155 (3.3)           | 1.03       | 210 (4.5)           | 1.40        | 0.73 (0.60-0.90)         | 0.003   |
| Primary outcome or death                                                                | 332 (7.1)           | 2.25       | 423 (9.0)           | 2.90        | 0.78 (0.67–0.90)         | <0.001  |
| Participants with CKD at baseline                                                       | (N=1330)            |            | (N = 1316)          |             |                          |         |
| Composite renal outcome‡                                                                | 14 (1.1)            | 0.33       | 15 (1.1)            | 0.36        | 0.89 (0.42–1.87)         | 0.76    |
| ≥50% reduction in estimated GFR§                                                        | 10 (0.8)            | 0.23       | 11 (0.8)            | 0.26        | 0.87 (0.36–2.07)         | 0.75    |
| Long-term dialysis                                                                      | 6 (0.5)             | 0.14       | 10 (0.8)            | 0.24        | 0.57 (0.19–1.54)         | 0.27    |
| Kidney transplantation                                                                  | 0                   |            | 0                   |             |                          |         |
| Incident albuminuria¶                                                                   | 49/526 (9.3)        | 3.02       | 59/500 (11.8)       | 3.90        | 0.72 (0.48–1.07)         | 0.11    |
| Participants without CKD at baseline                                                    | (N=333              | 32)        | (N=334              | <b>45</b> ) |                          |         |
| $\geq\!\!30\%$ reduction in estimated GFR to <60 ml/ min/1.73 $m^2\!\!\big/\!\!\!\big/$ | 127 (3.8)           | 1.21       | 37 (1.1)            | 0.35        | 3.49 (2.44–5.10)         | <0.001  |
| Incident albuminuria¶                                                                   | 110/1769 (6.2)      | 2.00       | 135/1831 (7.4)      | 2.41        | 0.81 (0.63-1.04)         | 0.10    |

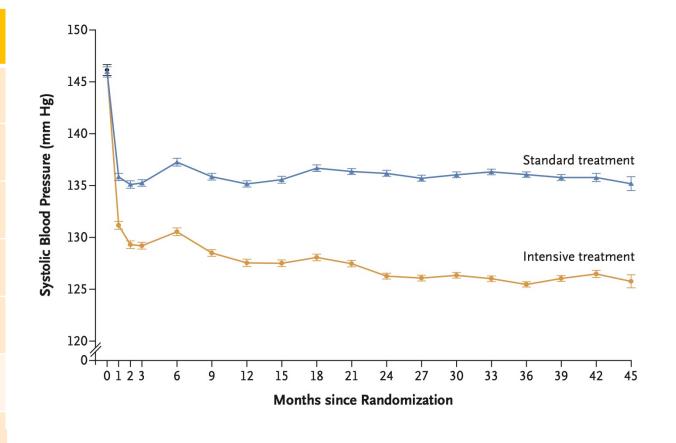



## Effect of Standard vs Intensive BP Control on the Risk of Recurrent Stroke A Randomized Clinical Trial and Meta-analysis The RESPECT Study Group

| Parameter       | Overall                                                 |
|-----------------|---------------------------------------------------------|
| N               | 1,263                                                   |
| Subjects        | Japanese pts with previous stroke in 3 yrs              |
| Age (yrs)       | 67.2                                                    |
| Target BP       | <120/80 vs <140/90<br><130/80 in DM, CKD, MI            |
| Achieved BP     | 126.7/77.4 vs 133.2/77.7<br>throughout follow up period |
| Primary outcome | Recurrent stroke                                        |

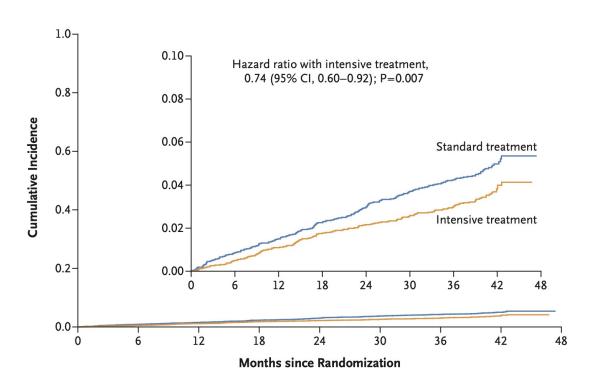
## A Randomized Clinical Trial and Meta-analysis The RESPECT Study Group

### Cumulative Incidence of Recurrent Stroke




## Effects of Intensive BP Lowering on Recurrent Stroke in a Meta-analysis of Randomized Clinical Trials

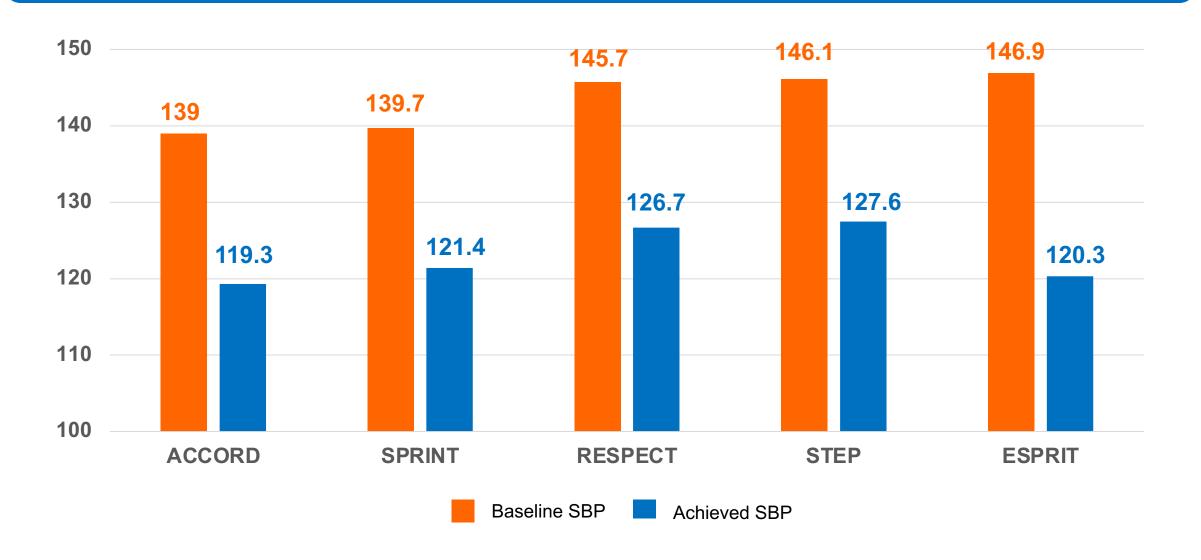
|                                          | No. of Events          | /No. of Patients      |                           | Favors                 | Favors                |  |
|------------------------------------------|------------------------|-----------------------|---------------------------|------------------------|-----------------------|--|
| Source                                   | Intensive<br>Treatment | Standard<br>Treatment | Relative Risk<br>(95% CI) | Intensive<br>Treatment | Standard<br>Treatment |  |
| Prior trials                             |                        |                       |                           | ;                      |                       |  |
| SPS3, <sup>10</sup> 2013                 | 118/1501               | 147/1519              | 0.81 (0.64-1.02)          | •                      |                       |  |
| PAST-BP, <sup>13</sup> 2016              | 0/266                  | 3/263                 | 0.14 (0.01-2.72)          | <b>~</b>               |                       |  |
| PODCAST, <sup>14</sup> 2017              | 1/41                   | 3/42                  | 0.34 (0.04-3.15)          | <b>~</b>               |                       |  |
| Subtotal effect: $I^2 = 0\%$ , $P = .05$ | 119/1808               | 153/1824              | 0.80 (0.63-1.00)          | <b>\( \)</b>           |                       |  |
| RESPECT                                  | 39/633                 | 52/630                | 0.75 (0.50-1.11)          |                        | -                     |  |
| Overall effect: $I^2 = 0\%$ , $P = .02$  | 158/2441               | 205/2454              | 0.78 (0.64-0.96)          | <b>\</b>               |                       |  |
|                                          |                        |                       |                           | 0.1                    | 10                    |  |
|                                          |                        |                       |                           | Relative Ris           | sk (95% CI)           |  |


## Trial of Intensive BP Control in Older Patients with HT The STEP Study

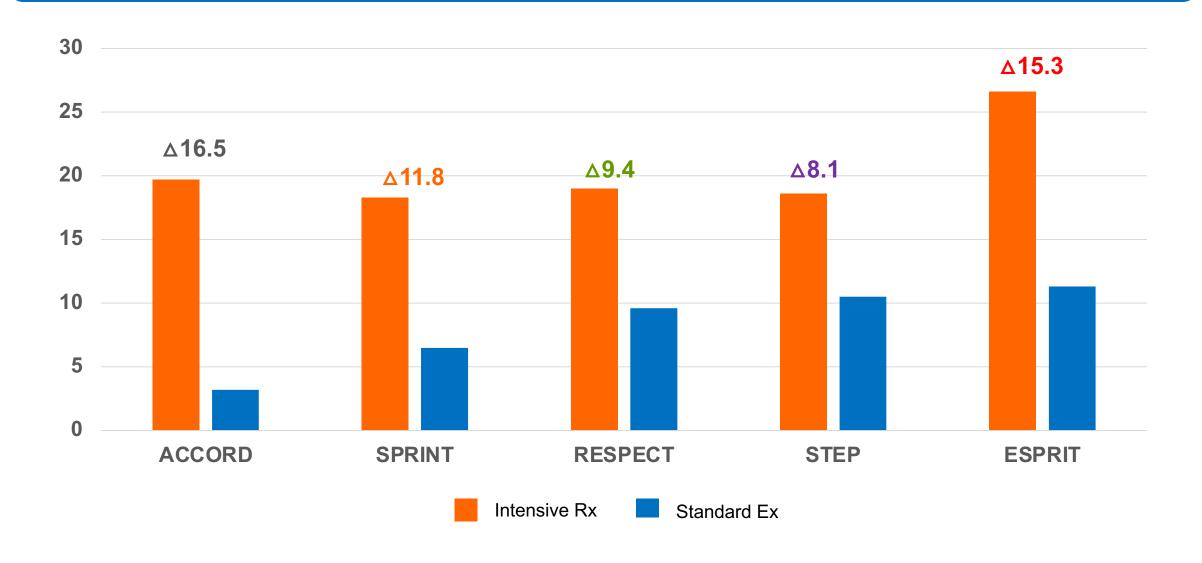
| Parameter   | Overall                 |
|-------------|-------------------------|
| N           | 8,511                   |
| Subjects    | Chinese pts 60-80 yrs   |
| Age         | 66 yrs                  |
| 60-69 yrs   | 76%                     |
| 70-80 yrs   | 24%                     |
| Target BP   | SBP 110-130 vs 130-150  |
| Achieved BP | At 1 yr: 127.5 vs 135.3 |



#### The STEP Study


## **Cumulative Incidence for the Primary Outcome**



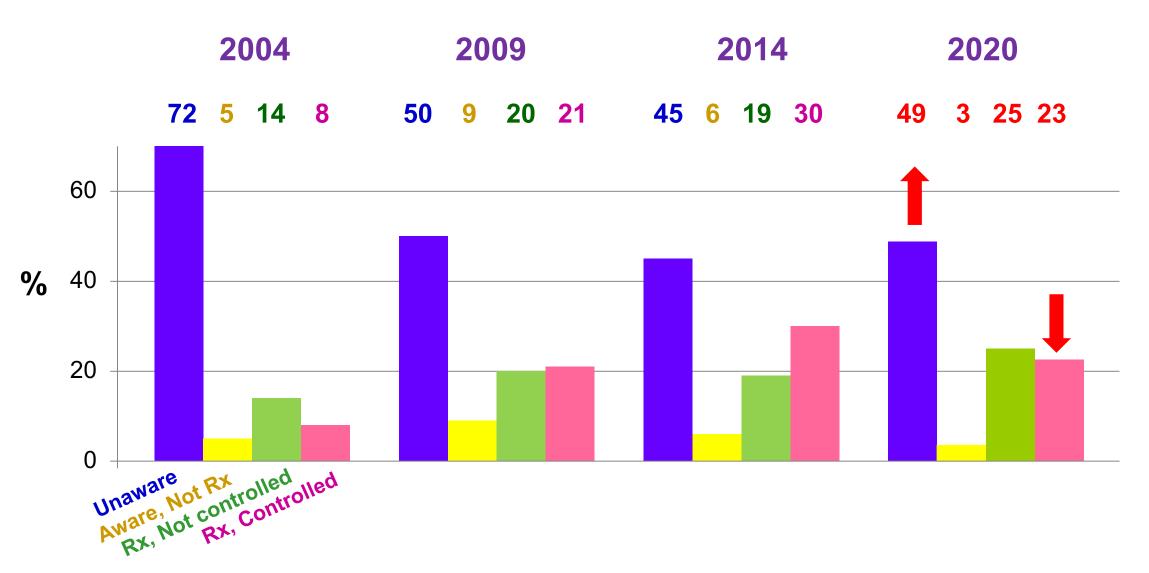

## Hazard Ratios for the Primary and Secondary Outcomes

| Outcome                           | Intensive Treatment (N = 4243) |                          | Standard Treatment (N = 4268) |                          | Hazard Ratio<br>(95% CI) | P Value |
|-----------------------------------|--------------------------------|--------------------------|-------------------------------|--------------------------|--------------------------|---------|
|                                   | no. of<br>patients (%)         | % with event<br>per year | no. of<br>patients (%)        | % with event<br>per year |                          |         |
| Primary outcome†                  | 147 (3.5)                      | 1.0                      | 196 (4.6)                     | 1.4                      | 0.74 (0.60-0.92)         | 0.007   |
| Secondary outcomes                |                                |                          |                               |                          |                          |         |
| Components of primary outcome     |                                |                          |                               |                          |                          |         |
| Stroke                            | 48 (1.1)                       | 0.3                      | 71 (1.7)                      | 0.5                      | 0.67 (0.47–0.97)         | _       |
| Acute coronary syndrome           | 55 (1.3)                       | 0.4                      | 82 (1.9)                      | 0.6                      | 0.67 (0.47–0.94)         | _       |
| Acute decompensated heart failure | 3 (0.1)                        | 0.03                     | 11 (0.3)                      | 0.09                     | 0.27 (0.08-0.98)         | _       |
| Coronary revascularization        | 22 (0.5)                       | 0.1                      | 32 (0.7)                      | 0.2                      | 0.69 (0.40-1.18)         | _       |
| Atrial fibrillation               | 24 (0.6)                       | 0.2                      | 25 (0.6)                      | 0.2                      | 0.96 (0.55-1.68)         | _       |
| Death from cardiovascular causes  | 18 (0.4)                       | 0.1                      | 25 (0.6)                      | 0.2                      | 0.72 (0.39–1.32)         | _       |
| Death from any cause              | 67 (1.6)                       | 0.5                      | 64 (1.5)                      | 0.5                      | 1.11 (0.78–1.56)         | _       |
| Major adverse cardiac events‡     | 100 (2.4)                      | 0.7                      | 138 (3.2)                     | 1.0                      | 0.72 (0.56–0.93)         | _       |

#### **Summary of Achieved BP in Each Trials**



### **Summary of BP Reduction in Each Trials**

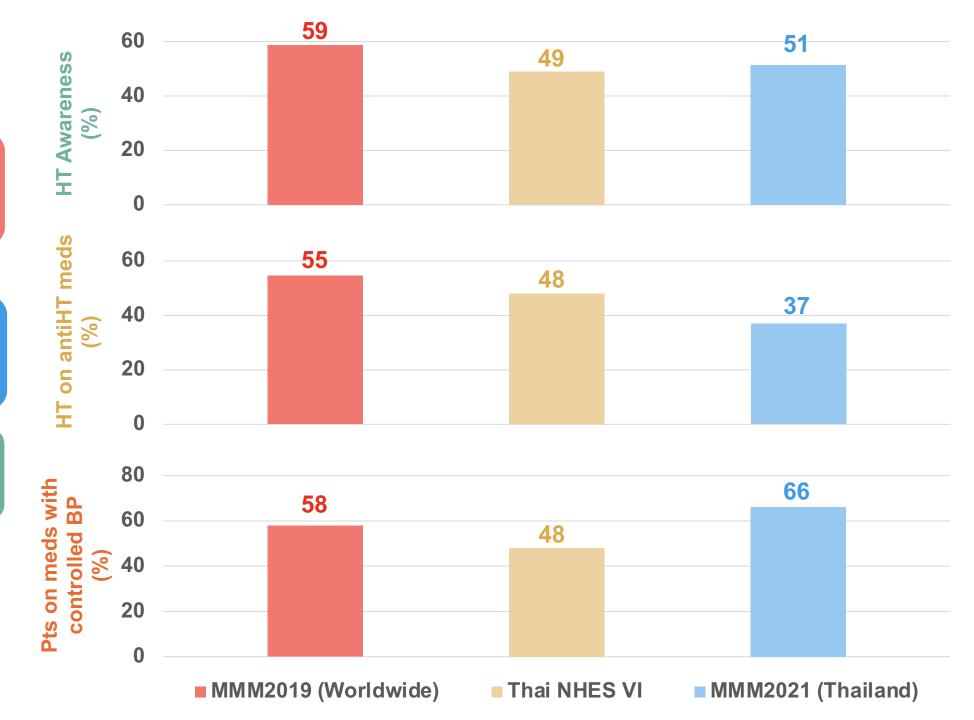



#### **Summary of Adverse Events in Each Trials**

|                            | ACC     | ORD   | SPR   | INT  | RESF  | PECT | ST    | EP   | ESP   | RIT  |
|----------------------------|---------|-------|-------|------|-------|------|-------|------|-------|------|
|                            | Inten   | Std   | Inten | Std  | Inten | Std  | Inten | Std  | Inten | Std  |
| Hypotension (%)            | 0.7     | 0.04* | 3.4   | 2*   | NA    | NA   | 3.4   | 2.6* | No    | diff |
| Syncope (%)                | 0.5     | 0.21  | 3.5   | 2.4* | 0.95  | 0.63 | 0.1   | <0.1 | 0.4   | 0.1  |
| Renal failure (%)          | 0.2     | 0.04  | 4.4   | 2.6* | 0.95  | 0.16 | 1     | 1    | No    | diff |
| SAE (%)                    | Higher* |       | 38.3  | 37.1 | No    | diff | No    | diff | 42    | 42   |
| Injurious fall or fracture | NA      | NA    | 2.2   | 2.3  | 2.05  | 2.7  | 0.4   | 0.4  | No    | diff |

Better than expected

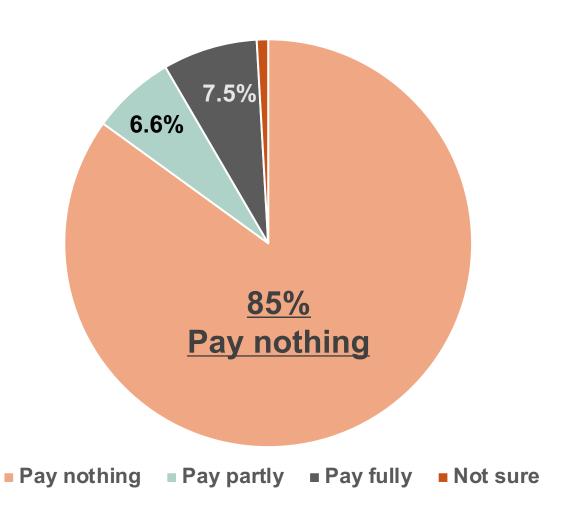
## Unawareness, Treatment, and Control of HT: Thai NHES III (2004), IV (2009), V (2014) and VI (2020)






#### MMM2021 THAILAND

Only 6.7% never have their BP checked


10.9% were >60 yrs-of-age







# Do you usually pay fees for your consultations and/or medications when you get your BP treated?



### In Summary

- There are assuring information from many RCTs indicating the benefit of intensive BP control (achieved SBP 120-127 mmHg) over standard Rx
- However, intensive BP control may be associated with more hypotension, syncope, and AKI ---- be more careful in vulnerable subjects
- BP control rates—even using conventional goals—remain suboptimal and have worsened in recent years
- Each country should modify their healthcare strategies to better tackle BP control and also other NCD problems in their population







## Faculty of Medicine Siriraj Hospital

Mahidol University Est.1888

